
User-centric Music Recommendations

Jaime Ramirez-Castillo1 M. Julia Flores1 Ann E. Nicholson2

1Departamento de Sistemas Informáticos, Universidad de Castilla - La Mancha, Spain
2Faculty of Information Technology. Monash University. Clayton. Australia.

Abstract

This work presents a user-centric recommendation
framework, designed as a pipeline with four dis-
tinct, connected, and customizable phases. These
phases are intended to improve explainability and
boost user engagement.
We have collected the historical Last.fm track
playback records of a single user over approxi-
mately 15 years. The collected dataset includes
more than 90,000 playbacks and approximately
14,000 unique tracks.
From track playback records, we have created a
dataset of user temporal contexts (each row is a
specific moment when the user listened to certain
music descriptors). As music descriptors, we have
used community-contributed Last.fm tags and Spo-
tify audio features. They represent the music that,
throughout years, the user has been listening to.
Next, given the most relevant Last.fm tags of a
moment (e.g. the hour of the day), we predict the
Spotify audio features that best fit the user prefer-
ences in that particular moment. Finally, we use
the predicted audio features to find tracks similar
to these features. The final aim is to recommend
(and discover) tracks that the user may feel like
listening to at a particular moment.
For our initial study case, we have chosen to predict
only a single audio feature target: danceability. The
framework, however, allows to include more target
variables.
The ability to learn the musical habits from a single
user can be quite powerful, and this framework
could be extended to other users.

1 INTRODUCTION

Music recommendation systems have been a popular topic
across streaming platforms and the Music Information Re-
trieval (MIR) research field. These systems have been a
fruitful area of research and a common feature implemented,
with different degrees of complexity, in many music stream-
ing platforms [Ramirez and Flores, 2020].

Music recommendations, however, are not always easy to
interpret from the perspective of the listener. Users often get
recommendations without clear, meaningful explanations or
justifications, such as why the listener might like a specific
track more than others.

One solution to this problem is to explore recommender
systems that focus on the users’ individual habits and their
listening contexts. User-centric recommendation approaches
are a response to the traditional, generic machine learning
approaches focused on reproducing ground truth and max-
imizing accuracy. Unlike generic techniques, user-centric
mechanisms aim to develop systems built on top of the user
context Schedl et al. [2013].

In this paper, we set the foundations of a user-centric music
recommendation framework. To us, the user-centric aspect
should not only consider specific circumstances about the
user context, but also give users enough feedback and con-
trol to enrich the recommendation process and the listening
experience.

The remainder of the article is organized as follows. In
section 2, we introduce the foundational ideas behind our
user-centric recommender system. Subsequently, section 3
covers the methodology used to gather the data, prepare
the data, and build the recommendation pipeline. Section
4 demonstrates how the recommendation pipeline works.
Finally, in section 5, we discuss our conclusions and future
work possibilities.

Accepted for the 16th Bayesian Modelling Applications Workshop (@UAI2022) (BMAW 2022).

mailto:<jaime.ramirez@alu.uclm.es>
mailto:<julia.flores@uclm.es
Ann.Nicholson@monash.edu

2 A USER-CENTRIC
RECOMMENDATION FRAMEWORK

In recent years, music recommendation algorithms have
been heavily influenced, improved, and driven by the
progress made in Artificial Intelligence (AI) and Machine
Learning (ML). One aspect of many modern AI/ML algo-
rithms, however, is their black-box nature. It is difficult for
users to ask Why and How a model is producing a particular
output.

Although researchers are making progress with explainabil-
ity techniques [Zhang et al., 2020], we believe that music
recommendations can be improved beyond explainability.

We envision a process similar to what music aficionados
might experience when they enter a record store, ask for
professional advice, and listen to a number of records. It
might be the case that the music store owner even knows
the preferences of the customer, and recommends records
accordingly.

We are also interested on exploring how an intelligent sys-
tem might be able to reproduce scenarios where a single user
picks tracks for listening, based on the user habits. The fo-
cus is not to generalize to other users, but to pick a track, or
a record, that a single user would like to listen to at a given
moment. This approach might be a way to, based on a single
user history of music listening habits, make generalizations
within the scope of the user, and with the perspective of the
user.

With this idea in mind, we have designed a music recommen-
dation framework as a pipeline that processes the listener’s
preferences, context, and music metadata, to produce rec-
ommendations.

To prevent the black-box effect, we have split the recom-
mendation process into a series of explicable steps, which
we call phases. The idea, with each one of these phases,
is to reinforce the user engagement, by gathering results,
inspecting explanations, and providing preferences in each
phase.

2.1 A SINGLE-USER DATASET

Similar to other intelligent systems, recommender systems
must be trained, by using user preference data, to produce
adequate recommendations. For our recommendation frame-
work, we have leveraged the knowledge discovery potential
of large historical listening logs, gathered from Last.fm.

To characterize the preferences and context of the user, we
have chosen to start with a simple scenario, where just data
from a single user is available. By training our system with
data from a single user, we also want to begin a discussion,
given the following question: Is it possible to train recom-
mender systems, and in particular, user-centric systems, by

using a single-user dataset?

To the best of our knowledge, research on user-centric rec-
ommender systems has concentrated its efforts on explain-
able AI Wang et al. [2019], and also user-centered evaluation
of these systems Knijnenburg et al. [2012]. We also argue
that recommender systems that exploit the preferences of a
single user, or a reduced number of users, might as well be
considered as user-centric models.

2.2 USER LISTENING CONTEXT DATA

We have generated our single-user dataset by using the
Last.fm listening history of a single user. Other than the
playback timestamp, the Last.fm API does not provide any
other additional details about the user’s context 1. Therefore,
the only context we have available is the moment when
the user played each track. These moments, available in
the Last.fm API as timestamp objects, provide us with the
following temporal context:

• Track playback time, including hour, and minute.

• Track playback date, including day, month, and year.

2.3 TRACK CHARACTERIZATION DATA

To characterize the music preferences of the user, we have
gathered the following data:

• Community-contributed tags from the Last.fm API.
These tags are text labels that Last.fm users assign
to artists, albums, or tracks. Users apply these tags to
categorize music from their own perspective, which
means that tags do not fit into any structured ontology
or data model. Tags can refer to aspects such as genre,
emotion, or user context.

• Track audio features from the Spotify API. These are
attributes computed from the audio themselves. They
are a way to describe music by using numerical values.
For example, a danceability attribute of 0.95 means
that a particular song is highly suitable for dancing.

To limit the scope of our data gathering efforts, we have
only collected the Last.fm tags and Spotify audio features of
the tracks that the user has listened to, as shown in figure 1.

The reader might also want to note that the Spotify API
provides low-level track analysis data, which we have not
leveraged in this study2.

1Further details about the Last.fm API can be found at https:
//www.last.fm/api

2Further details about the Spotify Web API can
be found at https://developer.spotify.com/
documentation/web-api/.

2

https://www.last.fm/api
https://www.last.fm/api
https://developer.spotify.com/documentation/web-api/
https://developer.spotify.com/documentation/web-api/

2.4 THE PHASES OF THE RECOMMENDATION
FRAMEWORK

The following items are the phases the recommendation
framework is built upon. These phases only describe the
inference process, after the data has been preprocessed and
the models have been trained.

• Phase one: When the user starts the listening session,
this phase suggests the most suitable Last.fm tags to
listen to.
This phase aggregates the strength of Last.fm tags in
a specific moment, given the user listening records.
This value is computed for the most relevant (top-k)
Last.fm tags found in the user listening history. For
example, if, throughout the years, the user has been
consistently listening to relaxing music before going
to sleep around 11:00 PM, then the tag Relaxing might
show a high strength value at this hour.

• Phase two: Generate the most-attractive fake track,
represented as a list of Spotify audio features.
In the second phase, a regression model receives the list
of Last.fm tag strength values as the input, and predicts
the values of the Spotify audio features. The model
output is a list of Spotify audio features, structurally
equal to what we would get if we queried the Spotify
API to get the features of any real track. Therefore,
we interpret this output as the hypothetic, most-likable,
fake track, which is what the model believes that the
user wants to listen to, given a set of Last.fm tags.

• Phase three: Find real tracks closest to the prediction.
A ranking system looks for tracks that are similar to
the fake track, by computing the distance of the Spotify
audio features of each of of these tracks with the fake
track. We have limited the scope of this query by se-
lecting only tracks that are in the user track collection.

• Phase four (not developed): Our plan is to post-process
the recommendations by applying diverse techniques
and criteria, allowing the user to participate in this
process, e.g. by selecting the degree of exploration
versus exploitation Dingjan [2020].

3 METHODOLOGY

The methodology here presented describes the details of the
following processes:

• Data gathering.

• Data preparation and aggregation.

• Phase-two model training.

• Inference: four-phase recommendation pipeline.

Identify
 unique tracks

For each track, get
 audio features

~20,000
unique tracks

Get user
historical logs

~ 90,000
playback
records

Last.fm API Spotify API

Spotify audio
features by

track

Figure 1: Data gathering. We have collected the historical
logs of a single user from Last.fm, for the 2007-2021 period.
The data includes more than 90,000 track playback records.
For each track the user has ever listened to, we have gathered
Spotify audio features.

3.1 DATA GATHERING

We have built a dataset tailored to the input requirements of
the Phase-two regression model. These requirements can be
defined as follows:

• Input parameters (X): Each sample consists of a list
of Last.fm tag strength values, which describe how
relevant each Last.fm tag is for each particular sample.
Each sample maps to a particular moment in the users’
listening history (e.g. 11 AM, August 15th, 2012).

• Output values (y): The most suitable values of the
Spotify audio features for a specific moment.

To construct the dataset, we have downloaded the data from
the Last.fm and Spotify APIs. The user we picked for our
research has been sending telemetry data to Last.fm since
2007. This user has reported more that 90,000 track play-
backs over 15 years3.

3.1.1 Last.fm Tags

Last.fm uses the term scrobble to refer to a single track play-
back, in a particular moment. We have queried the Last.fm
API to download the user’s scrobble logs, reported from

3The Last.fm account used in this work belongs the correspond-
ing author of this article. The listening history of this user is avail-
able at https://www.last.fm/user/jimmydj2000/.

3

https://www.last.fm/user/jimmydj2000/

2007 to 2022. For each scrobble, we have gathered the fol-
lowing information:

• Track playback timestamp.

• Track MusicBrainz Identifier (MBID), if exists.

• Track name

• Artist name

• Track tags. If the track does not have any tags assigned,
then artist tags have been used.

For each tag assigned to a track, or an artist, Last.fm includes
a count property to indicate the popularity, or strength, of
the given tag for the track. This value is normalized from
0 to 100, so the most popular tag (for a track) can have a
count value of 100.

Users normally listens to their favorite tracks many times,
so the amount of individual tracks listened is much smaller
than the number of track plays. In this case, the amount of
individual tracks listened is about 20,000.

3.1.2 Spotify Audio Features

After gathering Last.fm data and identifying the unique
tracks that represent the user music collection, we have
collected Spotify audio features. For each of these individ-
ual tracks, we have downloaded the Spotify audio features
specific to the given track.

The Spotify audio features are numerical values that repre-
sent high-level audio information computed from a specific
track. These values characterize a track, musically speaking,
by measuring relevant musical aspects.

The features provided by the Spotify API are: acousticness,
danceability, duration_ms, energy, instrumentalness, key,
liveness, loudness, mode, speechiness, tempo, and valence.
Table 1 describes these features. The reader can find further
details about each feature in the Spotify API documentation
4.

A small portion of the tracks do not have features available in
Spotify, so they have been filtered out from our experiments.

3.2 DATA PREPARATION

After having collected the data from Last.fm and Spotify,
the unprocessed dataset included, approximately, 90,000
playback records of 20,000 individual tracks, which corre-
spond to the listening activity of a single user throughout
years. Each track is associated with a list of Last.fm tags
(and their strength), and a list of Spotify audio features.

4See https://developer.spotify.com/
documentation/web-api/reference/#/
operations/get-audio-features.

Table 1: Spotify audio features. These features provide high-
level musical information about a track.

Feature name Description

acousticness The track is acoustic. From 0 to 1
danceability The track encourages (or is adequate

for) dancing. From 0 to 1
duration_ms Duration in milliseconds

energy The track is perceived as energetic.
From 0 to 1

instrumentalness The track is instrumental. From 0 to
1

key Key categories encoded as integers.
From C (0) to 11

liveness The audience is audible. From 0 to
1

loudness In decibels. From -60 to 0
mode Major (1) or minor (0)
speechiness Does the track contain speeches?

From 0 to 1
tempo In beats per minute (BPM)
valence How happy is the track (BPM).

From 0 to 1

3.2.1 Last.fm Tags Reduction

Counting the total amount of Last.fm tags in the user col-
lection resulted, initially, in more that five million tags. We
quickly confirmed that building a tabular data set, in which
every row contains millions of columns (Last.fm tags) was
doable, but presented scalability problems.

Therefore, we decided to reduce the number of tags by
picking a subset of the most relevant tags. The reduction
algorithm is simple: calculate a weighted sum of all the tags
appearances and pick the top 1000. The sum is weighted be-
cause we use the count attribute. This attribute is present in
every Last.fm track-tag association and provides a measure
of the strength of a particular tag in a specific track.

Note that this reduction is an initial approach, which, similar
to other phases, can be extended or improved in the future.
For this particular case, dimensionality reduction algorithms,
such as PCA, are good candidates for forthcoming iterations
of this work.

3.2.2 Reducing the Number of Samples

Our initial intention was to generate a dataset of musical
moments, or intervals. Moments (e.g 2007-07-31, from 6:00
PM to 7:00 PM) when the user listened to at least one track,
since 2007. So, rather than using each track playback as
a data record for training, we have grouped the data by
Year-Month-Day-Hour intervals.

4

https://developer.spotify.com/documentation/web-api/reference/##/operations/get-audio-features
https://developer.spotify.com/documentation/web-api/reference/##/operations/get-audio-features
https://developer.spotify.com/documentation/web-api/reference/##/operations/get-audio-features

Next, for each interval, we have aggregated the strength
values of the top-1000 Last.fm tags and Spotify audio fea-
ture values. Once again, we decided to choose the simplest
approach and calculate the mean to aggregate these values.

The following algorithm describes this grouping and aggre-
gation process in further detail:

1. Group track playbacks by Year-Month-Day-Hour inter-
vals.

2. For each interval i:

(a) For each tag t, of the top-1000 Last.fm
tags, found in the interval, calculate
tagIntervalStrengthit as the sum of all
the strength values of all the appearances of tag
t in interval i. E.g., if, from 5 PM to 6 PM, the
tag rock happens twice, with strength values of
100 and 80, then the total strength of rock for the
interval is 180.

(b) Calculate totalStrength as the sum of all tag
strength values tagIntervalStrengthit found
in interval i.

(c) For each t, divide tagIntervalStrengthit by
totalStrength.

This algorithm generates the relative frequencies (weighted
by strength) of the top-1000 Last.fm tags happening in Year-
Month-Day-Hour intervals. We have normalized the result
so that the values of these 1000 tags sum up to 100 for
each interval. These are not, strictly speaking, probabilities,
because they range from 1 to 100, and because how they
have been constructed. We could, however, interpret them
as probabilities, just dividing them by 100 and making them
belong to the range [0.0,1.0].

In the same direction, if we have, as evidence, that the cur-
rent hour (H) is 17:00, these values could be interpreted as
P (tagi, ..., tagk|H = 17:00). We could argue that we have
a conditional probability distribution where we consider the
probability (in fact, the relative frequency) of the k top 1000
tags, given a particular moment.

3.2.3 Spotify Features Reduction

Just like we have done with Last.fm tags, we have also gen-
erated average, or aggregated, values of Spotify features for
each Year-Month-Day-Hour interval. To aggregate the val-
ues of Spotify features, we have grouped track playbacks by
Year-Month-Day-Hour interval, calculated the mean value,
per interval, of each feature.

3.2.4 The Resulting Musical-moments Dataset

The resulting musical moments dataset is comprised of
14,203 samples. Each sample contains 1,000 Last.fm tag

~ 90,000
playback
records

Strength of
Last.fm tags

by Year-
Month-Day-

Hour
(X)

Spotify audio
features by

track

Spotify audio
features by
Year-Month-

Day-Hour
(y)

time
+

track

Join track
playback with

 features
and aggregate

Aggregate tag
strength
values

 time

Group by
playback
time

Musical Moments dataset

track
audio

features

Figure 2: Data preparation.

strength values, which sum up to 100, and 12 Spotify audio
features.

By reducing the data we have initially collected, we have
converted more than 90,000 track playback samples, into
a dataset of 14,000 musical moments. Additionally, with
this reduction, we have been able to minimize the hardware
requirements and the training time required for the initial
experiments of our framework. Finally, by training our sys-
tem with Year-Month-Day-Hour moments, we have created
a system that can deliver recommendations by just taking
the hour of the day as the input.

Also, as explained earlier, we have designed the framework
with customization in mind. Using Year-Month-Day-Hour
intervals, or partitions, is our initial approach, but a different
aggregation strategy might be chosen for future experiments.

3.3 PHASE-TWO MODEL TRAINING

After data preparation, the resulting musical moments
dataset contains 14,203 samples. Each sample includes
1,000 columns that correspond to Last.fm tag strength val-
ues, and 12 columns that correspond to Spotify audio fea-
tures.

The Spotify features are separated from the Last.fm tag
values, so a timestamp field is used to index and join both
sets. The Last.fm data file looks like the following example:

timestamp electronic seen live ...
2022-03-28T17 1.01822 7.28831 ...
...

Likewise, the Spotify features, indexed the same temporal
intervals, look as follows:

5

0.2 0.4 0.6 0.8 1.0
0

500

1000

1500

2000

2500

3000

3500

4000

Figure 3: Distribution of the danceability Spotify audio
feature across 20,000 individual tracks, which correspond
to the single-user dataset used in this paper.

timestamp acoustic. danceab. ...
2022-03-28T17 0.05211 0.6085 ...
...

By using these data, we can now train the model, which is
intended to be used in Phase two, to predict Spotify features
(y), given a list of 1000 Last.fm tag strength values (X).

When training, we have removed the timestamp column
index, so that the model does not have any sense of time.
We also split the dataset into training and validation sets.

For the sake of simplicity, our initial experiment in Phase
two trains the model to predict only one Spotify feature:
danceability.

By looking into all the danceability values we have gathered
for 20,000 tracks, we can see that the mean value of the
danceability feature is 0.599, and the standard deviation is
0.13, as figure 3 depicts.

3.3.1 Training Experiments and Results

As already mentioned, the framework has been designed
to be open for extension and customization. This means
that the strategies applied to each of the framework phases
should be replaceable and customizable. Because our inten-
tion is to validate the framework, rather than an individual
model, our training experiments have been simple. We have
conducted a round of simple tests by just training two mod-
els. Three, if we count the baseline model.

The musical moments dataset has been split into a training
set and a test set, generating a training set with 8482 samples,
and a test set with 4179 samples. After training each model
on the training set, we have evaluated the model on the test
set, by using the RMSE metric.

Initially, we have defined our baseline model as a simple,

Table 2: Phase-two model training experiments. The
RMSE of each model, as well as the training time, in sec-
onds. Each model has been trained on a training set of 8482
moments. The RMSE value is the result of using the 4179
moments of the test set to evaluate the model.

Model RMSE Seconds

Baseline 0.19 0
XGBoost 0.09 19
Bayesian Ridge 0.10 2

random predictor. This model generates predictions by fol-
lowing a normal distribution defined by the mean and the
standard deviation of the danceability.

Next, we have trained an XGBoost regression model and
a Bayesian ridge model. Table 2 shows the results of these
experiments. The experiment with XGBoost has produced
the lowest RMSE, so we have decided to use this model for
the recommendation pipeline.

3.4 RUNNING THE RECOMMENDATION
PIPELINE

After preparing the data and training the Phase-two model
that predicts Spotify features from Last.fm tag strengths, we
have built the phased pipeline for our music recommenda-
tion framework.

For each phase, we detail the input and output values, as
well as how the phase can be explained to the user.

3.4.1 Phase One: Estimate Current-moment Last.fm
Tag Strength Values

• Input: the current hour.

• Output: Estimated strength of the top-1000 Last.fm
tags for the current hour.

• Explainability: The outputs of this phase can be ex-
plained as P (Tag1...Tagn|Hour)

Phase one determines the current local time of the listener
and extracts the hour. Given the hour, our system generates
the probabilities of 1000-Last.fm-tag set.

The simplest solution for us has been to group the 1000-
Last.fm-tag set by hour, calculate the average for each hour,
and select the current hour.

Phase one aims at meeting the following goals:

1. Generate the top-1000 Last.fm tag strength values to
feed into phase two.

2. Provide the listener with insight about what are the
system beliefs about the user preferences in a certain

6

Last.fm
tag mean strength
values at 7:00 PM

given all moments
 at 7 PM,
calculate
the mean

Strength of
Last.fm tags

by Year-
Month-Day-

Hour

May 25th,
7 PM

Regression
model XGBoost

1000 tag strength values

predicted
 Spotify audio features

Most-likable
fake track

at 7 PM

Top-N tracks

Find closest tracks
Spotify audio
features by

track

Phase
One

Recommendations

Phase Four (To be defined)

Phase
Two

Phase
Three

Figure 4: Recommendation pipeline. The recommendation
pipeline begins with a particular moment in time (the hour
of the day). Phase one aggregates the available Last.fm tag
strength values for this particular hour. Phase two predicts
the most-suitable Spotify audio features for this hour, and
finally Phase three selects the tracks that are closest to this
prediction. The diagram also depicts Phase Four, to provide
an idea of where this additional phase fits in the framework.

moment.

3.4.2 Phase Two: Predict Spotify Features

• Input: Top-1000 Last.fm tag strength values.

• Output: Predicted Spotify audio features.

• Explainability: We have not implemented any explain-
ability strategy for this phase. However, the predictions
of any model applied to this phase could be explained,
either because the model is a white-box, interpretable
model (such as the Bayesian model), or because ex-
plainability practices are put into practice. In this case,
the model we use is XGBoost, which is difficult to
interpret. For this model, and other black-box models,
the predictions can be explained with techniques such
as LIME Ribeiro et al. [2016].

Phase two uses the Last.fm strength values compiled in the
previous phase and feeds these values into the model to
predict Spotify feature values.

3.4.3 Phase Three: Ranking

• Input: Spotify audio features. For the experiments of
this paper, we only include the danceability feature.

• Output: A top-k set of tracks, ordered by descending
distance to danceability.

• Explainability: The ranking only takes the danceability
feature into account and selects the tracks with the
closest danceability value.

By using the predicted Spotify audio features, we select
tracks that are closest to the predicted features. Basically,
the system proposes a set of songs, which are close to the de-
sired audio feature in a particular moment. For the scenario
we are explaining in this paper, we have only computed
the distance to the danceability feature, but we could com-
pute this distance to any other target variables, or even a
combination of them.

Tracks ranking, or selection, can be performed on any col-
lection of tracks if the Spotify features for those tracks are
known. In our case, we have queried the dataset of Spotify
audio features that we initially gathered for 20,000 unique
tracks, which can be interpreted as the music collection of
the user.

3.4.4 Phase 4: Fine-tuning

This phase has not been developed yet.

We intend to post-process the results, based for example, on
the degree of exploration, decided by the listener. The input
of this phase is a ranked list of the top-M songs closer to the

7

target feature. The user may want to include later some kind
of extra requirement, that could be considered in this phase.

4 EXPERIMENTATION

The following listings demonstrate how running the recom-
mendation pipeline on a very rudimentary terminal-based
user interface can provide recommendations, as well as feed-
back to the user.

4.0.1 Run recommendation pipeline at 19:00 PM

PHASE 1: Compute Last.fm Tags
· Current Time: 19:23
· Tag strength at 19:00-20:00

| electronic | electronica | ...
| 10.945045 | 3.170302 | ...

PHASE 2: Predict Spotify Features
· Danceability: 0.58332

PHASE 3: Ranking - Closest Tracks
1. Kelly Lee Owens - Jeanette

· danceability: 0.583
· distance: 0.0003215

2. ...

Phase three returns 20 tracks. The user has listened to 11
tracks and skipped the other nine.

4.0.2 Run recommendation pipeline at 9:00 AM

PHASE 1: Compute Last.fm Tags
· Current Time: 9:25
· Tag strength at 9:00-10:00

| electronic | electronica | ...
| 11.202752 | 3.096055 | ...

PHASE 2: Predict Spotify Features
· Danceability: 0.620887

PHASE 3: Ranking - Closest Tracks
1. Wiki & Oneplus - Rise to the Surface

· danceability: 0.621
· distance: 0.0001126

2. ...

The user has listened to 12 tracks. The other eight tracks
have been skipped.

5 DISCUSSION AND FUTURE WORK

This paper reflects our initial efforts to define a user-centric,
explainable, music selection and recommendation frame-
work. We have devised a modular scheme that can be used
in distinct scenarios, as certain decisions can be changed
within the phases but the design of the recommendation
pipeline makes sense equally.

This work has described the main phases of the framework,
and has provided a study case where we have worked with
the history log of a single user. We have created a personal-
ized recommended system, which could be applied to any
other users who have their track playback history available.

Apart from its clear application to other datasets (with one
or more users), the strongest point of this framework is the
versatility, not only in the determination of certain parame-
ters, and the models to be learned, but also in the way tags
are chosen, or in the target features. In the future, we would
like to explore this approach by trying to find the best uses
and configurations.

We state that the framework is modular because phases are
established in a high-level and abstract way, and we could
actually inject diverse strategies or algorithms in each phase.
For example, in phase one, our study case has grouped
listened tracks by hour. However, different time perspec-
tives could have been used (morning/afternoon/evening,
date+hour, weekday vs holidays/weekend, music that the
user listen on a Saturday morning, seasons, etc..). Also,
the aggregation functions to compute Last.fm tag strength
values are simple mean functions, but this can grow in com-
plexity if we use more complex estimation functions, or
even more advanced techniques, such as clustering.

With respect to Phase two, we have presented a regression
problem for a single predictive variable. However, there is
much room to experiment, both in the prediction problem
and in the paradigm of machine learning models. We can,
as well, explore explainability techniques here.

In this initial study case, we have just used the danceability
audio feature, but there are, as seen in Table 1 other interest-
ing values provided by Spotify. We could have used any of
them, and we think a combination of the most relevant ones
could be a promising strategy, which would transform the
problem into a multi-target regression taskXu et al. [2019].

When coping with Phase 3, we could apply more advanced
ranking algorithms. If, for example, we could predict distinct
target variables, how to generate the ranking of closer tracks
would imply more sophisticated techniques, where specific
multi-dimensional distances should be applied Liu et al.
[2018].

Finally, Phase 4 is still in an inception stage, and is open to
post-processing options, which could be given to the user
interactively, or could imply a finer selection of the proposed

8

tracks. In this phase, we plan to experiment with exploration
vs exploitation trade-offs.

In summary, this paper presents a new framework oriented
to user-centered recommendations in music listening. Also,
we have described a particularization of it, where we can
provide the user with a set of recommended songs, given
the time of the day, and based on a large historical track
playback log. Collecting, preprocessing and combining data
from Last.fm and Spotify is also a contribution, as this
have been done explicitly for this work. The applicability
of the current work and its possible extensions is clear and
quite straightforward. We plan to improve, extend and make
further and experiments in the near future.

References

Mitchell Dingjan. Exploring exploration in recommender
systems: Where? how much? for whom? Master’s thesis,
Delft University of Technology, the Netherlands, 2020.

Bart P Knijnenburg, Martijn C Willemsen, Zeno Gantner,
Hakan Soncu, and Chris Newell. Explaining the user
experience of recommender systems. User modeling and
user-adapted interaction, 22(4):441–504, 2012.

Weiwei Liu, Donna Xu, Ivor W Tsang, and Wenjie Zhang.
Metric learning for multi-output tasks. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 41(2):408–
422, 2018.

Jaime Ramirez and M Julia Flores. Machine learning for
music genre: multifaceted review and experimentation
with audioset. Journal of Intelligent Information Systems,
55(3):469–499, 2020.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin.
Model-agnostic interpretability of machine learning.
arXiv preprint arXiv:1606.05386, 2016.

Markus Schedl, Arthur Flexer, and Julián Urbano. The
neglected user in music information retrieval research.
Journal of Intelligent Information Systems, 41(3):523–
539, 2013.

Danding Wang, Qian Yang, Ashraf Abdul, and Brian Y
Lim. Designing theory-driven user-centric explainable
ai. In Proceedings of the 2019 CHI conference on human
factors in computing systems, pages 1–15, 2019.

Donna Xu, Yaxin Shi, Ivor W Tsang, Yew-Soon Ong, Chen
Gong, and Xiaobo Shen. Survey on multi-output learn-
ing. IEEE transactions on neural networks and learning
systems, 31(7):2409–2429, 2019.

Yongfeng Zhang, Xu Chen, et al. Explainable recommen-
dation: A survey and new perspectives. Foundations and
Trends® in Information Retrieval, 14(1):1–101, 2020.

Author Contributions

J. Ramirez-Castillo and M. Julia Flores constructed the
framework idea and wrote the central parts of the paper.
J. Ramirez-Castillo collected the data and combined the dis-
tinct sources of information to create the dataset. He made
most of the coding, aided in the process by M. J. Flores
and A. E. Nicholson. A. E. Nicholson contributed to the
paper revising the methodology and presenting her ideas to
improve the framework. She also contributed to the writing
of the paper.

Acknowledgements

This work has been partially funded by JCCM (Junta
de Comunidades de Castilla - La Mancha), FEDER
funds and the Spanish Government through projects SB-
PLY/21/180501/000148 and PID2019-106758GB-C33.

9

	Introduction
	A User-centric Recommendation Framework
	A Single-user Dataset
	User Listening Context Data
	Track Characterization Data
	The Phases of the Recommendation Framework

	Methodology
	Data Gathering
	Last.fm Tags
	Spotify Audio Features

	Data Preparation
	Last.fm Tags Reduction
	Reducing the Number of Samples
	Spotify Features Reduction
	The Resulting Musical-moments Dataset

	Phase-two Model Training
	Training Experiments and Results

	Running the Recommendation Pipeline
	Phase One: Estimate Current-moment Last.fm Tag Strength Values
	Phase Two: Predict Spotify Features
	Phase Three: Ranking
	Phase 4: Fine-tuning

	Experimentation
	Run recommendation pipeline at 19:00 PM
	Run recommendation pipeline at 9:00 AM

	Discussion and Future work

