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1 EXTENDED ABSTRACT

Multimorbidity has a great impact on human health. The
burden of multimorbidity is expected to increase globally
as population’s age, and is a huge public health challenge.
Researchers have used a variety of methods to unpick the
complexity of combinations of diseases, and identify clus-
ters and risk factors [Hassaine et al., 2020, Si et al., 2021].
Among these, as a flexible statistical tool for encoding prob-
abilistic relationships with directed acyclic graphs (DAGs)
[Heckerman et al., 1995], Bayesian networks (BNs) have
great potential to tackle such complex problems.

Compared with other fields of studies, for instance, experi-
mental biological systems, missing data are more pervasive
in health survey data. There are plentiful causes of missing
data, including item missingness, e.g., unanswered ques-
tions in questionnaires, data entry errors, or subject miss-
ingness, e.g., patients dropping out in longitudinal research,
missing samples. Missing data not only reduce overall statis-
tical power and precision, but can lead to biased inferences
in subsequent data analysis [Sterne et al., 2009]. Taking a
popular method complete case analysis (e.g., undertaking
analysis only on those cases without any missing data) as
an example, its statistical power and precision would be
inevitably reduced because of the decreased sample size.

Based on the different processes leading to the missing-
ness, every missing data pattern can be generally classi-
fied into three categories – missing completely at random
(MCAR), missing at random (MAR), and missing not at ran-
dom (MNAR) [Rubin, 1976]. This nomenclature is widely
used in statistical data analysis and is also referred to as
the missing data mechanisms. MCAR occurs if the missing-
ness is unrelated to both unobserved and observed variables.
Data are said to be MAR if the missingness is related to ob-
served variables but not to any unobserved variables given
the observed ones. MNAR is the most complicated because
its missingness relates to both unobserved and observed
variables [Rubin, 1976]. These three patterns cause different
levels of risks of bias in data analysis. For instance, the ap-

plication of complete case analysis in MAR and MNAR data
would yield more biased estimates than MCAR [Schafer
and Graham, 2002].

Multiple imputation by chained equations (MICE) is a popu-
lar multiple imputation method used in social science data. It
is designed to impute missing data values under the missing
data assumption MAR [Raghunathan et al., 2001]. Com-
pared to single imputation, multiple imputation methods
are less biased because they take account of the uncertainty
of the missing data by combining multiple predictions for
each missing value. MICE uses a divide and conquer ap-
proach to replace missing values for all variables in the data
set: it focuses on one variable at a time and makes use of
other variables to predict the missing values in that focused
variable. In epidemiology and clinical research, multiple
imputation is believed to have substantial potential for im-
proving the validity of quantitative analysis results for MAR
data. However, such methods are not suitable for MNAR
data, and it is still an outstanding task to adapt MICE for
dealing with MNAR data [Sterne et al., 2009].

Learning BN structure from incomplete data is quite chal-
lenging. Depending on the missing data mechanisms (e.g.,
MNAR or MAR), learning would be biased if we simply
delete incomplete observations. If we include every missing
value in the learning process, the required computational
resources for considering all possible completions of the
data set and related computations would grew exponentially
with the amount of missing values [Scutari, 2020].

The structural expectation-maximization (SEM) algorithm
makes BN structure learning from incomplete data compu-
tationally feasible by changing its search space to be over
structures rather than parameters and structures. SEM com-
pletes and perfects the data in an iterative way, then applies
the standard structure learning procedures to the completed
data [Scutari, 2020]. The framework of SEM was first pro-
posed by Friedman Friedman [1997]. His simulation results
suggest that SEM has potential to handle data involving
missing values and hidden variables.
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Here, we evaluate methods for addressing incomplete data
using a simulation framework. We simulate multiple in-
complete data sets, including three different missing data
mechanisms, various number of variables and amounts of
missing data. We then evaluate and compare the perfor-
mance of MICE and SEM with each other and with the
standard expedient of using only samples without missing
data, by comparing their resulting network structures with
the original network structure. We find that applying either
method (MICE or SEM) provides better structure recovery
than only using complete cases, and SEM in general out-
performs MICE. This finding is robust across missingness
mechanisms, number of variables, levels of data points and
amount of missing data.

We then apply the best working method, SEM, to the
United States Health and Retirement Study, a representative
study of adults aged 50+, including self-reported and nurse-
collected biomedical data collected in 2016. We subset the
original dataset to include key demographic information
(e.g., race, age and education), cognitive and physical exami-
nations (e.g., self-assessed memory, BMI), doctor diagnosed
diseases (e.g., diabetes) and laboratory data (e.g., HbA1c
measurements). This covers 5726 observations, in which
only 1955 cases are complete. Among all variables, the max-
imum missing percentage is 33.1%. We apply SEM to the
subset 100 times from different seeds and get the average
network based on the arc strength of each learned struc-
ture. We use the completed partially directed acyclic graph
(CPDAG) of each structure when calculating arc strengths.
Then we use hierarchical divisive clustering method to de-
tect the densely connected variables in the learned average
network.

We investigate the interactions among presence and treat-
ment for several chronic diseases and their associations
with individual’s demographic and socioeconomic factors.
We find that common metabolic conditions are clustered,
such as heart conditions, high blood pressure, total choles-
terol level and obesity. The treatments for diabetes, high
cholesterol level and heart conditions are closely linked
to each other. Our network shows strong relationships be-
tween cancer, arthritis and lung diseases. We find a direction
connection between smoking and lung disease, as would
be expected. Our analysis also highlights potential areas
of investigation. We use total score on telephone interview
for cognitive status measurement (TICS-M) to assess cog-
nitive impairment. We find that cognitive impairment is
closely associated with diabetes, education, age and race,
but stands alone from self-assessed memory decline. Ad-
ditionally, the treatment behaviors have strong interactions
with other chronic diseases, for example, the treatment for
diabetes and high cholesterol level is closely associated with
high blood pressure. These unexpected associations could
potentially be further explored in future analysis.
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