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Abstract

The Upper Indus Basin, Himalayas provides
water for 270 million people and count-
less ecosystems. However, precipitation, a
key component to hydrological modelling, is
poorly understood in this area. A key chal-
lenge surrounding this uncertainty comes from
the complex spatial-temporal distribution of
precipitation across the basin. In this work we
propose Gaussian processes with structured
non-stationary kernels to model precipitation
patterns in the UIB. Previous attempts to
quantify or model precipitation in the Hindu
Kush Karakoram Himalayan region have of-
ten been qualitative or include crude assump-
tions and simplifications which cannot be re-
solved at lower resolutions. This body of re-
search also provides little to no error propa-
gation. We account for the spatial variation
in precipitation with a non-stationary Gibbs
kernel parameterised with an input dependent
lengthscale. This allows the posterior function
samples to adapt to the varying precipitation
patterns inherent in the distinct underlying to-
pography of the Indus region. The input de-
pendent lengthscale is governed by a latent
Gaussian process with a stationary squared-
exponential kernel to allow the function level
hyperparameters to vary smoothly. In abla-
tion experiments we motivate each component
of the proposed kernel by demonstrating its
ability to model the spatial covariance, tem-
poral structure and joint spatio-temporal re-
construction. We benchmark our model with a
stationary Gaussian process and a Deep Gaus-
sian processes.

1 MOTIVATION

The Indus River is one of the longest rivers in Asia,
sustaining the livelihoods of over 268 million people
[Wester et al., 2019]. The river and its tributaries pro-
vide fresh water for drinking, domestic usage, indus-
trial processes, and agriculture through the world’s
largest contiguous irrigation system [Basharat, 2019].
The river also delivers most of Pakistan’s electricity
through hydropower plants [Nie et al., 2021] and sup-
ports countless ecosystems and biodiversity hotspots
[Xu et al., 2019].

Of all the rivers originating in the Himalayas, the In-
dus depends most strongly on water from snow and
glacier found in the Upper Indus Basin (UIB) [Lutz
et al., 2014]. Over 60% of the Indus’ annual flow is at-
tributed to the springtime melt of the snowpack and
glaciers [Immerzeel et al., 2010]. As climate change
progresses, these drivers are expected to be replaced
by precipitation. This change will lead to on average
less but more extreme variations in river flow and in
turn more floods, landslides, and droughts [Huss et al.,
2017].

With no robust adaption measures, financial losses and
profound socio-economic consequences including food
and water scarcity, mass migration and violent conflict
are projected [Wester et al., 2019, Huss et al., 2017].
The scale of these ramifications is still unknown with
the largest source of uncertainty attributed to precipi-
tation. [Li et al., 2016, Wulf et al., 2016, Remesan and
Holman, 2015, Meng et al., 2014, Andermann et al.,
2011].

Previous research modelling and predicting precipita-
tion in the Hindu Kush Karakoram Himalayan region
are often qualitative or include assumptions and sim-
plifications which cannot be resolved at lower resolu-
tions [Dahri et al., 2016]. For example, the regional
climates models from Coordinated Regional Climate
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Figure 1: Left: Shaded-relief image of the topography of the Upper Indus Basin with natural water bodies overlaid.
Right: Three precipitation regimes in the UIB identified through kmeans clustering. Regime names were chosen
by the authors.

Downscaling Experiment for South Asia regularly over-
estimates historical precipitation in the Himalayas by
over 100% for both winter and summer [Sanjay et al.,
2017]. These models are also computationally expen-
sive, lack error propagation, and generate large model-
dependent uncertainty.

Gaussian processes (GPs) offer a versatile and inter-
pretable way of studying and predicting precipitation
in this area. Crucially, they offer two unique advan-
tages which preclude several other modelling tools.
First, GP estimates provide principled uncertainty
quantification by design. One can derive concrete pre-
diction intervals through the posterior predictive distri-
bution; predictions accompanied by robust uncertainty
estimates can be critical for downstream decision mak-
ing. Secondly, GPs are a flexible prior of functions and
allow one to encode specific inductive biases through
kernel construction. For instance, one can encode prop-
erties like periodicity, smoothness or spatial hetero-
geneity through careful specification of the covariance
kernel.

This work concerns interpretable kernel constructions
for precipitation modelling in the UIB. We account for
non-stationarity and spatial heterogeneity through a
spatio-temporal kernel. In the next section, we give a
brief overview of the GP framework along with non-
stationary kernels. Section 3 presents experimental re-
sults from the case-study where we leverage spatio-
temporal and non-stationary kernels.

2 BACKGROUND

GPs are a powerful probabilistic and non-parametric
tool for modelling functions. They are fully specified
by a mean and covariance function where the lat-

ter controls the inductive bias and support of func-
tions under the prior. The choice of the covariance
function (alternatively, kernel or kernel function) and
in turn selecting the hyperparameters of the covari-
ance function is jointly referred to as the model se-
lection problem [Rasmussen and Williams, 2006] in
GPs. A large cross-section of Gaussian process litera-
ture uses universal kernels like the squared exponential
(SE) kernel along with automatic relevance determina-
tion (ARD) in high-dimensions. The SE-ARD kernel
is a translation-invariant stationary kernel which gives
infinitely smooth and differentiable samples in func-
tion space. The ARD framework operates by pruning
away extraneous dimensions through contracting their
inverse-lengthscales. The SE-ARD framework is the
most commonly reported baseline for Gaussian pro-
cess regression tasks. The SE-ARD kernel is given by,

k(x,x′)SE-ARD = σ2
f exp

{
− 1

2

D∑
d=1

(xd − x′
d)

2

ℓ2d

}
(1)

where x,x′ ∈ X are high-dimensional inputs X ≡
{xi}Ni=1, each xi ∈ RD and {ℓd}Dd=1 denotes a scalar
lengthscale per dimension and σ2

f is usually a scalar
amplitude.

Given observations (X,y) = {xi, yi}Ni=1 where yi are
noisy realizations of some latent function values f cor-
rupted with Gaussian noise, yi = f(xi) + ϵi, ϵi ∈
N (0, σ2

n), let kθ(xi,xj) denote a positive definite co-
variance function parameterised with hyperparameters
θ. The generative model governing the data is given by,

f ∼ GP(0, kθ(., .))

p(y|f) = p(yi|fi) =
N∏
i=1

N (fi, σ
2
n) (2)
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A Gaussian noise setting which we assume through
out yields a closed-form marginal likelihood p(y|θ). In
the standard set-up the negative log marginal likeli-
hood serves as the loss function against which θ is opti-
mised, we call this procedure ML-II. The SE-ARD ker-
nel with ML-II inference serves as the baseline model
to benchmark performance for the variants proposed
in this work. Learning occurs through adaptation of
the hyperparameters (θ) of the covariance function.
In the case of the SE-ARD kernel described above,
θ = {σ2

f , {ℓd}Dd=1, σ
2
n}.

p(y|θ) =
∫

p(y|f)p(f |θ)df (3)

=

∫
N (0,Kf )N (f, σ2

nI)df (4)

= N (0,Kf + σ2
nI)

The matrix Kf denotes the kernel kθ(·, ·) evaluated at
inputs X.

This works considers the non-stationary counterpart
of the squared-exponential kernel, the Gibbs kernel
[Gibbs, 1998] for the task of spatial precipitation mod-
elling. In contrast to the SE-ARD kernel proposed
above, the Gibbs kernel introduces input dependent
lengthscales in each dimension. Instead of a single-
point estimate ℓd per dimension we can consider ℓd(x),
a lengthscale function. One can choose a parametric
form for the dependence of the lengthscale on the in-
puts in each dimension but very often this dependence
is not known a priori. The Gibbs kernel for multi-
dimensional inputs is given by,

kGibbs(xi,xj) =

D∏
d=1

√
2ℓd(xi)ℓd(xj)

ℓ2d(xi) + ℓ2d(xj)
× (5)

exp
{
−

D∑
d=1

(x
(d)
i − x

(d)
j )2

ℓ2d(xi) + ℓ2d(xj)

}
Previous work, Heinonen et al. [2016] considers a for-
mulation where the lengthscale function is modelled
non-parameterically with a latent Gaussian process de-
fined on the same inputs.

ℓ̂ = log(ℓd) ∼ GP(0, kℓ(., .)) (6)
ℓ̂(x) = log(ℓd(x)) ∼ N (0,Kℓ) (7)

The hierarchical formulation makes the posterior and
marginal likelihood analytically intractable. However,
in the Gaussian likelihood setting one can consider a
maximum-a-posteriori (MAP) solution [Kersting et al.,
2007, Heinonen et al., 2016] by maximising,

ℓMAP = argmax
ℓ

log p(y|ℓ̂)p(ℓ̂) (8)

= argmax
ℓ

logN (y|0,Kf + σ2
nI)N (ℓ̂|0,Kℓ)

where ℓMAP is a vector of the size of the training inputs
X (note that it is typical to work with the log of the
marginal likelihood to avoid numerical underflow). Ex-
trapolating the non-parametric lengthscale to test in-
puts entails estimating p(ℓ⋆|ℓMAP,y) which we approx-
imate by E(ℓ⋆|ℓMAP) = K⋆ℓK

−1
ℓ ℓMAP (expectation of

a conditional Gaussian). Once the MAP solution has
been learnt at the training inputs, the posterior pre-
dictive p(f⋆|y, ℓMAP, ℓ⋆) ∼ N (µ⋆,Σ⋆) is given by,

µ⋆ = KT
⋆f (Kf + σ2

nI)−1y

Σ⋆ = K⋆⋆ −KT
⋆f (Kf + σ2

nI)−1Kf⋆ (9)

where Kf is based on the evaluation of eq. (5) on the
training inputs (using ℓMAP) and K⋆f is based on the
evaluation of kGibbs on test and training inputs using
ℓMAP and E(ℓ⋆|ℓMAP) respectively.

The latent GP parameterisation allows for extremely
flexible modelling where samples from the posterior
function space ‘adapt’ to the varying spatial dynamics
inherent in the data.

3 CASE-STUDY: ACCURATE
PRECIPITATION MODELLING
IN THE UIB

We conduct three experiments to highlight different
features of the kernel composition. In the spatial re-
gression task, we benchmark the non-stationary spa-
tial covariance kernel based on the Gibbs construction
against stationary baselines. The temporal extrapola-
tion task uses a locally periodic kernel to fit the uni-
variate precipitation dynamics at single spatial points
over time. The spatio-temporal task considers an addi-
tive kernel with components acting on the spatial and
temporal slice of the inputs to model dynamics over
space and time. The models are implemented using
GPyTorch [Gardner et al., 2018] and data is plotted
using xarray [Hoyer and Hamman, 2017].

Data: in this case study, we use the 5th ECMWF
Reanalysis (ERA5) dataset [Hersbach et al., 2020].
Reanalysis blends historical observations from sur-
face, sonde and satellite measurements with numeri-
cal weather forecasting models. Through this data as-
similation, the models create a past record of histor-
ical climate at high temporal and spatial resolution.
ERA5 runs from 1959 to the present day over 0.25° grid
and assimilates data from a large number of sources.
Each datapoint represents the average monthly precip-
itation in mm/day over a gridbox.

Precipitation in the UIB is complex and this is re-
flected in the ERA5 dataset. In this area, precipitation
is driven by two major atmospheric events: the Indian
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Figure 2: Timeseries drawn from each precipitation regime shown in Figure 1 (top: Gilgit, middle: Ngari, bottom:
Khyber). Note that there are no obvious trends in average or extreme precipitation during this period.

Summer Monsoon (ISM) and the western fronts (West-
erlies). The ISM brings rain from June to September.
The ISM reaches the south-eastern UIB first and has
a decreasing contribution to the annual rainfall in the
North-West direction.

The Westerlies are strongest in the winter from Decem-
ber to April, peaking in March [Dahri et al., 2016]. The
relative contribution of westerly fronts increases from
the South-East to the North-West of the basin. As a
consequence, the eastern UIB receives up to 70% of
its annual rainfall from the summer whereas the west-
ern UIB receives 40-60% of its precipitation during the
winter [Dahri et al., 2016].

The complexity of this distribution is illustrated in Fig-
ure 1 and 2 where three timeseries are sampled from
the three characteristic precipitation regimes identified
through K-means clustering.

3.1 SPATIAL REGRESSION

We model precipitation in the UIB at a single point
in time focusing on accurately capturing the spatial
variation of precipitation. The stationary model and
the deep GP uses a 2D SE-ARD kernel learning sta-
tionary hyperparameters (with ML-II inference) which
are constant across space. In the Gibbs formulation
(eq. (5)) we learn a lengthscale per spatial point using

MAP estimation ( as described in section 2). Figure 4
shows the best mean prediction from 10 splits for each
of the baselines. The 2-layer deep GP [Damianou and
Lawrence, 2013] with skip connections performs worse
than the standard baseline in terms of prediction er-
ror. The high-precipitation areas in the Khyber zone
are best captured by the Gibbs kernel. It is interest-
ing to note that the predictive intervals for the DGP
yield higher predictive densities for test data despite
inferior predictive means. The Gibbs formulation gives
the best trade-off in terms of reconstruction error as-
sessed against ground-truth and quality of predictive
uncertainty.

Metric SE-ARD DGP (L2) Gibbs
RMSE 0.353 ± 0.014 0.603 ± 0.018 0.271 ± 0.014
NLPD 0.406 ± 0.063 0.010 ± 0.011 0.019 ± 0.016

Table 1: 2D Spatial regression on precipitation data
over the entire UIB over the month of Jan, 2000. We
report Root Mean Squared Error (RMSE) and Nega-
tive Log Predictive Density (NLPD) on held-out test
data over 10 splits.
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Figure 3: Predicting the precipitation trend with a locally periodic kernel. The dotted line demarcates the
training and test regimes. The error bars denote 95% confidence intervals around the predicted mean. Some
outliers remain uncaptured by the Gaussian prediction intervals, indicating mild non-Gaussianity in the targets.
In the bottom plot we regress the outputs in log-space and visualise the 1d log-normal distribution with the
respective quantiles.

3.2 TEMPORAL EXTRAPOLATION

We regress on univariate time inputs (monthly obser-
vations) to capture the local periodicity exhibited in
the precipitation dynamics. In order to moderate the
changing amplitudes of the peaks we add flexibility by
multiplying with a SE-ARD kernel (acting on univari-
ate time inputs). The periodic kernel we use is given
by,

kPER(xi,xj) = σ2
f exp

{
−2 sin2(π|xi − xj |/p)

ℓ2

}
(10)

Figure 3 depicts the prediction performance over train
and test where we train on years 1979-2002. The
predictions under the log-normal distribution ensure
positivity (as desired), further the heavy-tailed non-
Gaussian prediction intervals capture the outlying val-
ues which elude the symmetric Gaussian intervals. The
test RMSE and NLPD for the fits are given by (0.5536
vs. 0.5328) and (1.3248 vs. 0.9721).

3.3 SPATIO-TEMPORAL REGRESSION

In this experiment we consider the task of predicting
dynamics across space and time (3D inputs) for a 1
month ahead forecast. We train on January to April
2000 and test on the month of May. We wanted to
constrain the training data set to a moderate size so
as to execute exact GP inference for the baseline case.

For the stationary (shallow) model, the spatio-
temporal kernel is formed by adding together the spa-
tial and temporal components with one important in-

novation. In the earlier sections the temporal compo-
nent acted solely on the time dimension while the spa-
tial component acted solely on the spatial dimensions
(latitude and longitude). Denoting the time and spa-
tial coordinates as xt,xlat,xlon respectively, the kernel
for the stationary model is given by,

kstat.(xi,xj) =

kSE-ARD((x
lat
i ,xlon

i ), (xlat
j ,xlon

j ))× kPER(x
t
i,x

t
j)︸ ︷︷ ︸

temporal

+ kSE-ARD((x
lat
i ,xlon

i ), (xlat
j ,xlon

j ))︸ ︷︷ ︸
spatial

(11)

We weave the spatial dimensions into the temporal ker-
nel by making the RBF component dependent on the
latitude and longitude, this allows the amplitude/scale
of the periodic component to vary for different spatial
regions. Note that this is still a stationary kernel. For
the non-stationary extension in this setting we keep
the temporal component identical to the stationary
formulation eq. (11) but replace the spatial component
with the Gibbs kernel eq. (5).

knon-stat.(xi,xj) =

kSE-ARD((x
lat
i ,xlon

i ), (xlat
j ,xlon

j ))× kPER(x
t
i,x

t
j)︸ ︷︷ ︸

temporal

+ kGibbs((x
lat
i ,xlon

i ), (xlat
j ,xlon

j ))︸ ︷︷ ︸
spatial

(12)

where kGibbs is parameterised by 2 non-parametric
lengthscale processes - ℓlat(x

spatial) and ℓlon(x
spatial)

acting on the 2d spatial dimensions as inputs. We en-
close the regression results for the 1-month ahead fore-
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Figure 4: ERA5 data and 2D precipitation modelling over inputs (lat, lon) for the non-stationary Gibbs kernel,
and two-layer DGP and shallow GP with stationary kernels. Table 1 provides test predictive performance metrics
over 10 splits of the data.

cast based on the baseline and non-stationary construc-
tion in fig. 5.

We do not present results for the deep GP in this sec-
tions as they were found to yield substandard results
in section 3.1.

4 CONCLUSIONS AND FURTHER
WORK

We demonstrate kernel composition in modelling the
spatial and temporal precipitation dynamics over the
UIB. In the spatial setting, the non-stationary kernel
does much better than a deep GP and the station-
ary baseline. More comprehensive and complex exper-
iments will provide answers to how these methods can
be best be used in ‘real world’ settings and, scientifi-
cally, what drives precipitation in the UIB.

Further investigation will seek to better understand
historical precipitation distribution in this area. In
particular, a detailed analysis of the Gibbs hyperpa-
rameter functions are needed over longer training and
testing intervals. This would require making the non-
stationary formulation compatible with sparse GPs re-
lying on inducing points [Titsias, 2009]. Future iter-
ations will also consider more features that are pre-

dictive of precipitation such as elevation, slope and
large scale atmospheric variables. The Gibbs hyper-
paramaters will give us insight into where and how
these features are influencing rain and snowfall in
basin. Model comparison metrics like BIC (Bayesian
information criterion) will help understand more com-
plex non-stationary constructions in light of model
complexity.

Next, precipitation change under different climate
scenarios will be considered. ERA5 climatic vari-
ables will be swapped with global climate model out-
puts. Although not explored in this paper, the non-
stationarity of precipitation with respect to climate
change will become more important in the future. This
non-stationarity should be in part captured by the
large scale atmospheric variables previously mentioned.
However, a non-stationary kernel could also have a role
to play here.

Finally, the Bayesian nature of these models will give
a more accurate and informed quantification of uncer-
tainty than regional climate models that uses ensemble
spread as proxy for uncertainty. In the non-stationary
setup, the hyperaparemeter distributions could also
point scientists to the most significant drivers of pre-
diction variability.
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