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With rapid advancements in genome sequencing technolo-
gies and a significant reduction in the associated costs, a
vast amount of genomic and transcriptomic datasets have
been created, covering thousands of genome sequences of a
wide range of organisms [Barbosa et al.,[2018]]. Gene Regu-
latory Networks (GRN5s) allow scientists to understand how
various molecular components interact to collectively define
the phenotype and physiology of the organism under study
[Xing et al., 2018].

A GRN is defined as a network learned from gene expres-
sion data using statistical approaches [Emmert-Streib et al.,
2014]. A GRN is represented as a graph with nodes and di-
rected edges. The nodes represent the biological entities, e.g.
genes, proteins, mRNAs, protein/protein complexes or cellu-
lar processes. Edges between nodes represent interactions or
regulatory relationships between the nodes [[Angelin-Bonnet
et al., 2019]. These regulatory relationships correspond to
molecular reactions between the biological entities through
which the products of one gene can cause change in an-
other. Inferring GRNs from gene expression data is one
of the most challenging tasks of systems biology [Ivanov
et all 2016]. The prediction accuracy of models is nega-
tively affected by factors including: the high dimensionality
and sparsity of the gene expression data; multicollinear-
ity; risks of over-fitting from multiple testing [Altman and
Krzywinski, |2018]]; and high complexity of the problem
space. Conventional machine learning (ML) methods, that
may work reasonably well on simple datasets, may become
computationally infeasible to run on high-dimensional data.
Inference of GRNSs is considered to be an ill-posed problem
[Tvanov et al.,2016|. Quality assessment and validation of
the inferred GRNs is an additional challenge [Ivanov et al.,
2016]], due to scarcity of available information about the
true structures of biological networks [Dojer et al., 2006].

In this talk, we describe GRNs and their importance in
the field of biological and biomedical science. We review
advancements in ML research for inferring GRNs from gene
expression data. Computational methods of GRN inference
are categorised into methods based on information theory

models, Boolean networks, ordinary differential equation
models, regression, trees, artificial neural networks (ANNs),
deep learning and Bayesian networks (BNs). For each of
these categories, we present a literature review of methods
that have been proposed for GRN inference.

The main focus of this talk is on BNs and dynamic Bayesian
networks (DBNs), which have been extensively used for
GRN inference. A Bayesian network is probabilistic graphi-
cal model that consists of a directed acyclic graph (DAG)
denoted by G and a set of conditional probability parameters
denoted by 6. The DAG G is represented by a set of nodes
X and a set of edges E that connect the nodes. Each node
in a Bayesian network represents a distinct random variable
and the directed edges signify the existence of conditional
dependencies between linked variables. The strengths of
the relationships between linked variables are expressed by
forward conditional probabilities [Pearl, |2014]]. Standard
BNs do not provide a mechanism to represent temporal
dependencies.

Dynamic Bayesian networks (DBNs) are an extension to
BN that model a dynamic process that evolves over time, in
which a past state influences the current state [Enright and
Madden, [2015]]. In a DBN, time is discretized into a series
of time-slices [Koller and Friedmanl 2009]. Each time-slice
represents the state of the variables at a certain point in time.
A DBN contains an initial Bayesian network, denoted by G
and a transitional Bayesian network, denoted by G_, [Koller
and Friedman} 2009]]. G is a standard Bayesian network. It
consists of intra-time slice edges that represent non-temporal
(instantaneous) relationships between the variables. G_,
defines temporal relationships among variables across two
adjacent time-slices. In G_,, edges can exist between a node
in the current time-slice to a node in the next time-slice.
Such edges are called inter-time-slice edges. G_, may also
contain edges between nodes in the same time-slice. Such
edges are called intra-time slice edges. The intra-time slice
edges of GG_, correspond to the intra-time slice edges of Gj.

BNs have been extensively used to model gene data.
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Bayesian models are attractive for their ability to describe
complex stochastic processes. All biological systems, in-
cluding gene regulatory processes, evolve under stochastic
processes [Donnet and Samson, 2013} |Ajmal et al.} |2017],
therefore BN's are well-suited to represent them. An impor-
tant advantage of using BNs to model GRNGs is that they have
to ability to work on locally interactive components with
a relatively smaller number of variables [Friedman et al.,
2000]]. BNs can also combine prior knowledge to strengthen
the causal relationships and avoid over-fitting. A GRN can
be modelled as a BN. Each node in the Bayesian network
represents the expression of a gene. The edges between the
nodes represent the existence of a regulatory relationship be-
tween them. The conditional probability distribution of each
node quantifies the strength of the influence of its regulators
(parent nodes) on its value [Liu et al., 2016].

Boolean networks, although simple and easy to implement,
can not cope up with noise and data uncertainty [Delgado
and Gomez-Velal 2019]]. They require crude data discretiza-
tion which often results in loss of information. ODE models
use continuous variables to model the gene expression data
[Delgado and Gomez-Vela, [2019]]. ODE models represent
how change in the expression of a gene is driven by the ex-
pression level of its regulator genes. They can also take into
account the environmental factors to allow qualitative mod-
elling [Delgado and Gémez-Vela, |2019]. ODE models as-
sume that the observed dynamics of a system are exclusively
driven by internal, deterministic mechanisms and there is
no uncertainty in the process [Donnet and Samson) 2013]].
This assumption does not hold true for biological systems
[Donnet and Samson, 2013]]. Most ODE modelling meth-
ods to elucidate GRNs consider only linear models or just
specific types of non-linear functions [[Voit, [2000], whereas
gene regulatory processes are often driven by complex, non-
linear dynamics [Delgado and Gémez-Vela, 2019]. ODE
models can not scale up to a very large number of genes
as it is hard to estimate the model parameters as the model
dimension increases.

Information theory models are attractive because of their
lower computational cost but they do not capture higher or-
der conditional dependencies. Huynh-Thu and Sanguinetti
[2019] have discussed advantages and disadvantages of
regression-based models. As they note, regression-based
methods are very popular for GRN inference. They can
capture higher-order dependencies. They can also predict
expression of a gene from expressions of a subset of genes.
They are generally computationally intensive. Regression-
based methods do not perform well on datasets with multiple
strongly correlated covariates [Huynh-Thu and Sanguinetti,
2019], which is a common case in gene expression datasets
due to their high dimensionality. Tree-based methods can
be used model the multivariate effect of several genes on
a target gene. The number and nature of the parameters is
flexible. Compared to ODEs and BNs, they are computa-

tionally less expensive, hence they are more favourable to
be applied on high-dimensional datasets [Huynh-Thu and
Geurts|, |2019]. Compared to other unsupervised methods,
like ANNSs, they have fewer parameters to be set [Huynh{
Thu and Geurts, [2019]].

Information theory models, ODE-based, regression-based
and tree-based methods take a top-down approach for net-
work construction. They start with a fully connected network
and then apply some threshold to filter a set of edges [Huynh{
Thu and Sanguinetti, |2019]]. Choosing this threshold value
is a non-trivial, challenging task [Huynh-Thu and Geurts,
2019]. In contrast, BNs construct joint probabilistic model
out of local conditional independence terms [Huynh-Thu
and Sanguinettil, 2019].

As noted by Koumakis| [2020], the use of deep learning
(DL) models is in the stage of infancy in bioinformatics
research. Gene expression datasets usually have a relatively
limited number of samples, but DL methods are notoriously
data-hungry [Koumakis), |2020]]. DL models are black-box.
They also require a large number of hyper-parameters that
need to be tuned. Finding the best configuration of these
hyper-parameters is a non-trivial task. The results of DL
methods tend to be sensitive to the choice hyper-parameters
[Min et al., 2016].

BNs are more favourable for GRN modelling over ANN-
based models due to their easy interpretation [[Koumakis|
2020)]. Finding a suitable BN structure is a computationally
intensive task. One obvious limitation of BN, is that one has
to make fixed assumptions about the nature of interactions
between the variables. Most BN based implementations
to infer GRNs from gene expression data assume a linear
model [Huynh-Thu and Sanguinetti, 2019].

Several BN structure learning methods have been proposed
in the literature. We have created a catalogue of the most
note-worthy methods. These are categorised into score-
based, constraint-based and hybrid methods. Score-based
methods apply general optimization techniques to BN struc-
ture learning [Koller and Friedman, 2009]]. These meth-
ods have two components, a scoring objective and a search
method. For each candidate D AG, a decomposable network
score is calculated that reflects its goodness of fit to the data
[Koller and Friedman, 2009]. A search method is applied to
navigate through the space of possible network structures to
find a structure that maximises the score [Koller and Fried!
man), 2009]]. Search methods include exact algorithms or
heuristic search methods. Some examples of score-based
BN learning methods applied for GRN inference are Fried+
man et al.|[1999]], Ajmal and Madden| [2021]] and |Yu et al.
[2004]], etc.

Constraint-based methods tend to learn the BN structure
that best captures the independencies in the domain [Koller
and Friedman, 2009]]. These measure the conditional inde-
pendence constraints with statistical tests and build a DAG



consistent with the corresponding d-separation statements.

Hybrid methods combine constraint-based and score-based
methods. The first step is to apply conditional independence
tests and rank all the possible edges in the network. Then, all
the edges that rank below a certain threshold are excluded
from the search space. This is followed by a score-based
search to find a graph with oriented edges within the re-
stricted search space [Tsamardinos et al.,[2000].

To deal with scalability issues, many researchers have also
proposed methods based on local search. These are also
reviewed in our research. We also review methods for mod-
elling time delays in gene regulation and for modelling
time-varying GRN structures based on non-stationary DBN
learning. To the best of our knowledge, this is a first study
in the recent years that catalogues BN learning methods for
GRN inference. In our talk, we also discuss the relative ad-
vantages and disadvantages of other methods and compare
them to BN based methods.
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